Thứ Hai, 15 tháng 2, 2010

temp-note-k8s

Contents

Cài đặt: 4

Cài đặt từ Repo. 6

Kube Dashboard. 9

Tool hay: 9

Kompose = Convert docker-compose to K8s. 9

THUẬT NGỮ: 10

POD.. 10

GET pod. 10

Run Pod. 10

APPLY pod. 11

EXEC Để  chạy command trong pod. 11

EXEC -it Truy cập vào Pod: 11

Port-Froward. 12

DELETE pod. 12

LOG pod. 12

Describe pod. 12

LABEL. 12

NameSpace. 13

Tạo namespace. 13

Services VD1. 13

ClusterIP: 13

NodePort 15

LoadBalancer 15

Ingress: 16

Services VD2. 17

Describe service. 19

Replicaset (rs) 20

DELETE Replicaset 21

DaemonSET. 21

JOB.. 21

NETWORKING.. 22

VOLUME. 22

emptyDir 22

hostPath. 23

persistentVolume-Claim NFS. 25

persistentVolumeClaim-HostPath. 28

Storage Class. 30

Storage Class as NFS. 30

Recycling PersistentVolume. 31

CONFIG MAP – SECRET. 32

env. 32

Create config map. 33

Sử dụng configmap vào trong pod. 33

Secret 34

DEPLOYMENT. 34

VD_1 về đổi image trong deployment 36

VD2 Zero downtime deployment: 37

STATEFULL-SET. 37

DOWNWARD API 39

Kube-Internal 40

Readiness & Liveness. 40

podAntiAffinity. 40

TIP-TRICK.. 40

Install telnet in docker apk. 40

ARGO-CD -- ARGO-CD -- ARGO-CD-- ARGO-CD -- ARGO-CD -- 41

CÀI ĐẶT. 41

  1. Hello World Workflow.. 41

TEMPLATE TRONG ARGO.. 42

Container template. 42

Script Template. 42

Resource Template. 43

Suspend. 45

Template INVOCATORS. 45

STEP. 45

Serial Step (Step nối tiếp nhau) 45

Step Parabel (Step song song) 46

Suspend Step Template. 47

DAG.. 49

Bài tập 1 về Step và Dag. 51

WORKFLOW FUNCTION ARGO.. 53

1.MinIO.. 53

2.Cài đặt Argo-Cli 54

3.InputParameter: 54

4.Scripts Result 58

5.Output parameter 61

6.Output Parameter File. 64

  1. Artifact 66
  2. Secrets as environment variables. 69
  3. Secrets as mounted volumes. 69
  4. Loops. 69
  5. Loops with sets. 71
  6. Loops with sets as input parameters. 73
  7. Dynamic Loops. 76
  8. Conditionals. 78
  9. Depends. 80
  10. Depends theorie. 81
  11. Retry strategy. 81
  12. Recursion. 81
  13. Exercise 2 - task introduction. 81
  14. Exercise 2 - solution. 81

 

 

---

Cài đặt:

git clone https://github.com/luksa/kubernetes-in-action.git

 

kubectl

cd /opt/; curl -LO https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl

chmod +x kubectlsudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl  

bash-completion

#apt-get install bash-completionsudo yum install bash-completion -yecho 'source <(kubectl completion bash)' >>~/.bashrcecho 'alias k=kubectl' >>~/.bashrcecho 'complete -F __start_kubectl k' >>~/.bashrc

 

kubectl-convert

curl -LO https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl-convert chmod +x kubectl-convertsudo install -o root -g root -m 0755 kubectl-convert /usr/local/bin/kubectl-convert 

 

minikube

(yêu cầu phải cài docker hoặc podman: curl -fsSL https://get.docker.com/ | sh )

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64chmod +x minikube-linux-amd64 mv minikube-linux-amd64 minikubesudo install ./minikube /usr/local/bin/minikubesu tuandaminikube start#minikube stop Kiểm tra minikube và clusster#kubectl cluster-info

 

#

 

Helm

wget https://get.helm.sh/helm-v3.8.0-rc.2-linux-amd64.tar.gz

(hoặc: curl -sSL https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 | bash )

helm repo add stable https://charts.helm.sh/stable

helm search repo stable

helm repo update

helm search repo nginx

helm install my-nginx bitnami/nginx

helm create my-project

 

Cài đặt từ Repo

https://bikramat.medium.com/set-up-a-kubernetes-cluster-with-kubeadm-508db74028ce

https://phoenixnap.com/kb/how-to-install-kubernetes-on-centos

https://phoenixnap.com/kb/how-to-install-kubernetes-on-a-bare-metal-server

https://xuanthulab.net/gioi-thieu-va-cai-dat-kubernetes-cluster.html

 

 

B1: Đặt Hostname (run on Master + Worker node)

#hostnamectl set-hostname master-node

#hostnamectl set-hostname worker-node1

#hostnamectl set-hostname worker-node2

 

# cat << EOF >> /etc/hosts

192.168.88.12 master-node

192.168.88.13 worker-node1

192.168.88.14 worker-node2

EOF

 

 

B2: Setting cơ bản (run on Master + Worker node)

Disable Swap trên master và worker

# Tat swap

sed -i '/swap/d' /etc/fstab

swapoff -a

 

cat <<EOF > /etc/sysctl.d/k8s.conf

net.bridge.bridge-nf-call-ip6tables = 1

net.bridge.bridge-nf-call-iptables = 1

EOF

sysctl --system

Disable Selinux: (run on Master + Worker node)

sudo setenforce 0

sudo sed -i 's/^SELINUX=enforcing$/SELINUX=permissive/' /etc/selinux/config

sudo sed -i 's/^SELINUX= permissive$/SELINUX=disabled/' /etc/selinux/config

 

B3: Cài docker-ce (run on Master + Worker node)

yum install epel-release -y ; curl -fsSL https://get.docker.com/ | sh

usermod -aG docker $(whoami)

 

## Create /etc/docker directory.

mkdir /etc/docker

 

## Thay đổi cgroup theo từng loại OS (Centos/Ubuntu/...)

[tuanda@master-node ~]$ sudo docker info | grep -i cgroup

 Cgroup Driver: systemd

 Cgroup Version: 1

 

# Setup daemon theo cgroup ở trên.

cat > /etc/docker/daemon.json <<EOF

{

  "exec-opts": ["native.cgroupdriver=systemd"],

  "log-driver": "json-file",

  "log-opts": {

    "max-size": "100m"

  },

  "storage-driver": "overlay2",

  "storage-opts": [

    "overlay2.override_kernel_check=true"

  ]

}

EOF

 

#Chú ý cần có dòng này

mkdir -p /etc/systemd/system/docker.service.d

 

 

# Restart Docker

systemctl enable docker.service

systemctl daemon-reload

systemctl restart docker

 

 

 

Cài đặt kubelet/kubeadm/kubectl (run on Master + Worker node)

cat <<EOF > /etc/yum.repos.d/kubernetes.repo

[kubernetes]

name=Kubernetes

baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64

enabled=1

gpgcheck=1

repo_gpgcheck=1

gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg

EOF

 

yum install -y kubelet kubeadm kubectl

service kubelet start

systemctl enable kubelet.service

telnet localhost 10248

Mở port master node

sudo firewall-cmd --permanent --add-port=6443/tcp

sudo firewall-cmd --permanent --add-port=2379-2380/tcp

sudo firewall-cmd --permanent --add-port=10250/tcp

sudo firewall-cmd --permanent --add-port=10251/tcp

sudo firewall-cmd --permanent --add-port=10252/tcp

sudo firewall-cmd --permanent --add-port=10255/tcp

sudo firewall-cmd --reload

Mở port worker node

sudo firewall-cmd --permanent --add-port=10251/tcp

sudo firewall-cmd --permanent --add-port=10255/tcp

firewall-cmd –reload

URL Port cần mở ở đây https://kubernetes.io/docs/reference/ports-and-protocols/

 

Bước 4 : Khởi tạo Master Node (run on Master node)

kubeadm init --apiserver-advertise-address=192.168.88.12  --pod-network-cidr=10.244.0.0/16

(trường hợp tạo lỗi, ta có thể gõ lệnh #kubeadm reset)

su - tuanda

mkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/config

 

Lệnh in lại command join: kubeadm token create --print-join-command

 

Bước 5: Pod Network trên Master-Node (run on Master node)

Ta có thể dùng nhiều addon như Flanel, cacilo, weaver. Và network chỉ apply được sau khi init master-node.

kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml

Hoặc Calico

Tham khảo cách cài calico 50node, 100node, etcd: https://projectcalico.docs.tigera.io/getting-started/kubernetes/self-managed-onprem/onpremises

# curl https://projectcalico.docs.tigera.io/manifests/calico.yaml -O

# kubectl apply -f calico.yaml

 

 

 

 

Bước 6: Join Worker node: (run on Worker node)

kubeadm join 192.168.88.12:6443 --token h46n34.uq80d4pro1qjyvk0 --discovery-token-ca-cert-hash xxxxxxxxxxx

 

Bước 7: Kiểm tra (run on Master node)

[tuanda@master-node ~]$ kubectl get node

[tuanda@master-node ~]$ kubectl cluster-info

[tuanda@master-node ~]$ kubectl get pod -A

 

Other: remove node:

kubectl drain Ten_Node

 

Kube Dashboard

Hướng dẫn: https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

Hướng dẫn: https://www.replex.io/blog/how-to-install-access-and-add-heapster-metrics-to-the-kubernetes-dashboard

curl https://raw.githubusercontent.com/kubernetes/dashboard/v2.4.0/aio/deploy/recommended.yaml -o kubernetes-dashboard.yaml

cur https://raw.githubusercontent.com/kubernetes/dashboard/master/aio/deploy/recommended/kubernetes-dashboard.yaml

kubectl apply -f

[tuanda@master-node ~]$ kubectl -n kubernetes-dashboard get pod

 

 

Tool hay:

Kompose = Convert docker-compose to K8s

https://kompose.io/  (cài đặt)

$ kompose convert -f docker-compose.yaml

 

 

 

 

THUẬT NGỮ:

Replicaset: tạo ra multi-pod chạy cùng trên 1 image

Depoyment: Quản lý các replicaset, phục vụ cho việc thay đổi image hoặc cấu hình.

Statefullset: Khi tạo statefullset, Pod bị xóa đi thì pod mớ được sinh ra sẽ kế thừa network + volume từ pod cũ. mặc định sẽ tự tạo thêm PVC để giữ PV luôn cố định, dữ liệu sẽ không thay đổi, thích hợp cho sử dụng DB

DaemonSet:

 

File YAML Mô tả cấu trúc

 

 

Debug lỗi:

kubectl describe pod

kubectl logs pod

 

POD

Mỗi 1 microserver sẽ đặt trên 1 pod.

Để kiểm tra pod, ta sử dụng những lệnh sau:

GET pod

kubectl get all

kubectl get pods

kubectl get pod --show-labels

kubectl explain pods

kubectl get pod kubia-manual -o yaml (hoặc json)

kubectl get all -o wide  (hiển thị rộng hơn)

 

Run Pod

# kubectl run kubia --image=luksa/kubia --port=8080# kubectl run -i --tty busybox --image=busybox --restart=Never –- sh# kubectl run busybox --image=busybox --restart=Never -o yaml --dry-run=client -- /bin/sh -c 'echo hello;sleep 3600' 

 

 

APPLY pod

#  kubectl apply -f kubia-manual.yaml

#  kubectl get all

 

EXEC Để  chạy command trong pod

kubectl exec [POD] -- [COMMAND]

#  kubectl exec kubia-manual -- ls

bin

dev

etc

 

EXEC -it Truy cập vào Pod:

#  kubectl -it exec webapp -- sh

/ # whoami

root

 

Port-Froward

tuanda@localhost Chapter03]$ kubectl port-forward kubia-manual 8888:8080

 

DELETE pod

#  kubectl delete pod nginx

# kubectl delete po --all

# kubectl delete po -l creation_method=manual   (xóa pod có chỉ định label ở phần dưới)

 

LOG pod

#  kubectl logs -f kubia-manual

 

Describe pod

#  kubectl describe pod webapp

#  kubectl describe pod nginx

 

LABEL

[tuanda@localhost Chapter03]$ kubectl get node --show-labels

[tuanda@localhost Chapter03]$ kubectl get pod --show-labels

 

Add thêm labels:

[tuanda@localhost Chapter04]$ kubectl label pod kubia-gg5t5 type=special

[tuanda@localhost Chapter04]$ kubectl get pod --show-labels

NAME          READY   STATUS    RESTARTS   AGE   LABELS

kubia-gg5t5   1/1     Running   0          9h    app=kubia,type=special

kubia-sbsjw   1/1     Running   0          71m   app=kubia

 

Thay label (tách pod ra khỏi replicaset/control)

[tuanda@localhost Chapter04]$  kubectl label pod kubia-gg5t5 app=ahihi –overwrite

 

(Việc add, thêm label có thể làm được với cả node)

NameSpace

#  kubectl get ns

[tuanda@localhost  ]$ kubectl get pod -n default (mặc định, khi tạo bạn không chỉ rõ ns, thì pod sẽ nằm ở ns default)

#  kubectl get pod -n kube-system

#  kubectl get all -n kube-system

#  kubectl get all --all-namespaces  (lấy toàn bộ thông tin của tất cả NS)

# k get all -A

 

Tạo namespace

Có thể tạo từ yaml hoặc command:

# kubectl create namespace tuanda -o yaml --dry-run=client

 

Services

VD1: ClusterIP:

Đây là loại truy cập nội bộ các pod với nhau, không truy cập từ bên ngoài vào đc.

[tuanda@localhost Chapter05]$ cat kubia-svc.yaml

apiVersion: v1

kind: Service

metadata:

  name: kubia

spec:

  ports:

  - port: 80

    targetPort: 8080

  selector:

    app: kubia

 

[tuanda@localhost Chapter05]$ cat ../Chapter04/kubia-replicaset.yaml

apiVersion: apps/v1

kind: ReplicaSet

metadata:

  name: kubia

spec:

  replicas: 3

  selector:

    matchLabels:

      app: kubia

  template:

    metadata:

      labels:

        app: kubia

    spec:

      containers:

      - name: kubia

        image: luksa/kubia

Ta có thể truy cập vào pod. Và thử lệnh curl

[tuanda@localhost Chapter05]$ kubectl apply -f kubia-svc.yaml

[tuanda@localhost Chapter05]$ kubectl exec kubia-8z2lv -- curl -s kubia

[tuanda@localhost Chapter05]$ k get svc

NAME         TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE

kubernetes   ClusterIP   10.96.0.1       <none>        443/TCP   3h59m

kubia        ClusterIP   10.103.135.99   <none>        80/TCP    64s

(ở đây, kubia chính là ip của svc được phân giải ra IP: 10.103.135.99)

[tuanda@localhost Chapter05]$ kubectl exec -it kubia-8z2lv -- bash

root@kubia-8z2lv:/# ping kubia

PING kubia.default.svc.cluster.local (10.103.135.99): 56 data bytes

 

 

NodePort

Nodeport có thể cho client bên ngoài gọi đc. Bằng IP của các node cluster. Nodeport có range từ 30000 đến 32767

[tuanda@localhost Chapter05]$ cat kubia-svc-nodeport.yaml

apiVersion: v1

kind: Service

metadata:

  name: kubia-nodeport

spec:

  type: NodePort

  ports:

  - port: 80

    targetPort: 8080

    nodePort: 30123

  selector:

    app: kubia

 

[tuanda@localhost Chapter05]$ kubectl get all -o wide

[tuanda@localhost Chapter05]$ minikube  ip

192.168.49.2

[tuanda@localhost Chapter05]$ curl 192.168.49.2:30123

You've hit kubia-g586k

 

LoadBalancer

Hỗ trợ cả bên ngoài client và trong pod đều gọi vào đc.

 

[tuanda@localhost Chapter05]$ cat kubia-svc-loadbalancer.yaml

apiVersion: v1

kind: Service

metadata:

  name: kubia-loadbalancer

spec:

  type: LoadBalancer

  ports:

  - port: 80

    targetPort: 8080

  selector:

    app: kubia

 

[tuanda@localhost Chapter05]$ kubectl apply -f kubia-svc-loadbalancer.yaml

 

Ingress:

[tuanda@localhost Chapter05]$ minikube get addon list

[tuanda@localhost Chapter05]$ minikube addons enable ingress

???????????

 

Services VD2

Port-Forward

Chạy pod nginx ở trên. Sau đó gõ

[tuanda@localhost ~]#  kubectl port-forward nginx 8080:80

[tuanda@localhost ~]# curl localhost:8080

<!DOCTYPE html

 

Tạo service

#  cat webapp-service.yaml

apiVersion: v1

kind: Service

metadata:

  name: fleetman-webapp

 

spec:

  selector:

    app: webapp

    release: "0-5"

 

  ports:

    - name: http

      port: 80

      nodePort: 30080

 

  type: NodePort

 

 

Sửa thêm pods.yaml

apiVersion: v1

kind: Pod

metadata:

  name: webapp

  labels:

    app: webapp

    release: "0"

spec:

  containers:

  - name: webapp

    image: richardchesterwood/k8s-fleetman-webapp-angular:release0

 

---

apiVersion: v1

kind: Pod

metadata:

  name: webapp-release-0-5

  labels:

    app: webapp

    release: "0-5"

spec:

  containers:

  - name: webapp

    image: richardchesterwood/k8s-fleetman-webapp-angular:release0-5

 

 

Mô hình sẽ như sau:

Ta có thể luân chuyển service chọn pod nào bằng cách thay đổi

  selector:

    app: webapp

    release: "0-5"

 

 

#  kubectl get pods --show-labels

#  minikube ip

192.168.49.2

#  kubectl get all

NAME                     READY   STATUS    RESTARTS   AGE

pod/nginx                1/1     Running   0          7h35m

pod/webapp               1/1     Running   0          7h52m

pod/webapp-release-0-5   1/1     Running   0          11m

 

NAME                      TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE

service/fleetman-webapp   NodePort    10.101.82.133   <none>        80:30080/TCP   15m

service/kubernetes        ClusterIP   10.96.0.1       <none>        443/TCP        8h

Ta sẽ thực hiện truy cập vào http://192.168.49.2:30080

Describe service

#  kubectl describe svc fleetman-webapp

Name:                     fleetman-webapp

Namespace:                default

Labels:                   <none>

Annotations:              <none>

Selector:                 app=webapp,release=0-5

Type:                     NodePort

IP Family Policy:         SingleStack

IP Families:              IPv4

IP:                       10.101.82.133

IPs:                      10.101.82.133

Port:                     http  80/TCP

TargetPort:               80/TCP

NodePort:                 http  30080/TCP

Endpoints:                172.17.0.7:80

Session Affinity:         None

External Traffic Policy:  Cluster

Events:                   <none>

Từ lệnh desscribe trên, ta hiểu là service fleetman-webapp  được gắn với pod= webapp và release = 0-5

 

 

Replicaset (rs)

Ta thực hiện chỉnh sửa file  pods.yaml, còn services.yaml vẫn giữ nguyên

 >>>>chuyển sang>>>>>>>

 

[tuanda@localhost Chapter04]$ cat kubia-replicaset.yaml

apiVersion: apps/v1beta2

kind: ReplicaSet

metadata:

  name: kubia

spec:

  replicas: 3

  selector:

    matchLabels:

      app: kubia

  template:

    metadata:

      labels:

        app: kubia

    spec:

      containers:

      - name: kubia

        image: luksa/kubia

 

[tuanda@localhost Chapter04]$ kubectl describe rs kubia

#  kubectl get rs

#  kubectl edit rs Tên_RS

 

DELETE Replicaset

#   kubectl delete rs webapp

 

 

 

DaemonSET

 

 

JOB

 

 

 

 

NETWORKING

Ta sẽ thực hiện trỏ bằng dns, sau đó kube-dns sẽ phân giải ra IP cần tìm.

Kiểm tra dns

#  kubectl get svc kube-dns -n kube-system

NAME       TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)                  AGE

kube-dns   ClusterIP   10.96.0.10   <none>        53/UDP,53/TCP,9153/TCP   24h

#  kubectl describe svc kube-dns -n kube-system

 

 

 

 

VOLUME

Các loại Volume : https://kubernetes.io/docs/concepts/storage/volumes/

Các loại PV: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

emptyDir

[tuanda@localhost Chapter06]$ cat fortune-pod.yaml

apiVersion: v1

kind: Pod

metadata:

  name: fortune

spec:

  containers:

  - image: luksa/fortune

    name: html-generator

    volumeMounts:

    - name: html

      mountPath: /var/htdocs

  - image: nginx:alpine

    name: web-server

    volumeMounts:

    - name: html

      mountPath: /usr/share/nginx/html

      readOnly: true

    ports:

    - containerPort: 80

      protocol: TCP

  volumes:

  - name: html

    emptyDir: {}

[tuanda@localhost Chapter06]$ kubectl port-forward fortune 8080:80

[tuanda@localhost Chapter06]$ curl localhost:8080

 

 

hostPath

VD1

Lưu vào phân vùng của node/minikube

[tuanda@localhost Chapter06]$ cat mongodb-pod-hostpath.yaml

apiVersion: v1

kind: Pod

metadata:

  name: mongodb

spec:

  containers:

  - image: mongo

    name: mongodb

    volumeMounts:

    - name: mongodb-data

      mountPath: /data/db

    ports:

    - containerPort: 27017

      protocol: TCP

  volumes:

  - name: mongodb-data

    hostPath:

      path: /tmp/mongodb

 

 

 

Storage Class / PV / PVC

Storage

https://kubernetes.io/docs/concepts/storage/storage-classes/

https://medium.com/codex/kubernetes-persistent-volume-explained-fb27df29c393

Kiến trúc:

Các loại storage có thể lên trang chủ để tìm.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: local-storage

provisioner: kubernetes.io/no-provisioner

volumeBindingMode: WaitForFirstConsumer

allowVolumeExpansion: true

reclaimPolicy: Delete

 

 

 

VD1: Storage Class as NFS a Trung

Đọc thư mục : D:\Dropbox\Config server\k8s\volume\nfs-client (của anh Trung share)

 

helm repo add nfs-subdir-external-provisioner \

  https://kubernetes-sigs.github.io/nfs-subdir-external-provisioner/

 

helm repo update

helm install nfs-provisioner-2 \

  nfs-subdir-external-provisioner/nfs-subdir-external-provisioner \

  --set nfs.server=192.168.135.2 \

  --set nfs.path=/data/nfs \

  --set storageClass.name=nfs-provisioner-2 \

  --set storageClass.onDelete=retain \

  --set storageClass.accessModes=ReadWriteMany

 

helm install nfs-provisioner-3 \

  nfs-subdir-external-provisioner/nfs-subdir-external-provisioner \

  --set nfs.server=192.168.135.3 \

  --set nfs.path=/data/nfs \

  --set storageClass.name=nfs-provisioner-3 \

  --set storageClass.onDelete=retain \

  --set storageClass.accessModes=ReadWriteMany

 

 

Recycling PersistentVolume

Có 3 loại:

  • Retain: khi xóa PVC thì PV vẫn còn- dữ liệu trong PV không bị xóa.
  • Recycle: khi xóa PVC thì PV vẫn còn, nhưng dữ liệu trong PV sẽ được xóa đi để tái sử dụng
  • Delete: khi xóa PVC thì PV sẽ bị xóa luôn.

 

Subpath khi sử dụng chung 1 PVC khá hay https://kubernetes.io/docs/concepts/storage/volumes/#using-subpath

 

CONFIG MAP – SECRET

ConfigMap

https://kubernetes.io/docs/concepts/configuration/configmap/

ENV alone

apiVersion: v1

kind: Pod

metadata:

  name: fortune-env

spec:

  containers:

  - image: luksa/fortune:env

    env:

    - name: INTERVAL

      value: "30"

    - name: TUANDA

      value: "kaka"

    name: html-generator

    volumeMounts:

    - name: html

      mountPath: /var/htdocs

  - image: nginx:alpine

    name: web-server

    volumeMounts:

    - name: html

      mountPath: /usr/share/nginx/html

      readOnly: true

    ports:

    - containerPort: 80

      protocol: TCP

  volumes:

  - name: html

    emptyDir: {}

[tuanda@localhost Chapter07]$ kubectl exec -it fortune-env -- printenv

INTERVAL=30

TUANDA=kaka

Create config map

Tạo config map từ command-line

[tuanda@localhost Chapter07]$ kubectl create configmap fortune-config --from-literal=sleep-interval=25

Hoặc từ file config hoặc yaml, json (thích hợp với import file dài, khó)

[tuanda@localhost configmap-files]$ kubectl create configmap tuanda-config --from-file=customkey=my-nginx-config.conf

 

Configmap as ENV

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

apiVersion: v1

kind: Pod

metadata:

  name: fortune-env-from-configmap

spec:

  containers:

  - image: luksa/fortune:env

    env:

    - name: INTERVAL

      valueFrom:

        configMapKeyRef:

          name: fortune-config

          key: sleep-interval

    name: html-generator

    volumeMounts:

    - name: html

      mountPath: /var/htdocs

  - image: nginx:alpine

    name: web-server

    volumeMounts:

    - name: html

      mountPath: /usr/share/nginx/html

      readOnly: true

    ports:

    - containerPort: 80

      protocol: TCP

  volumes:

  - name: html

    emptyDir: {}

 

khi vào pod, ta sẽ thấy container có biến môi trường là : INTERVAL=25

 

Configmap as Volume

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

apiVersion: v1

kind: Pod

metadata:

  name: dapi-test-pod

spec:

  containers:

    - name: test-container

      image: k8s.gcr.io/busybox

      command: [ "/bin/sh", "-c", "ls /etc/config/" ]

      volumeMounts:

      - name: config-volume

        mountPath: /etc/config

  volumes:

    - name: config-volume

      configMap:

        name: special-config

  restartPolicy: Never

 

 

 

Secret

https://kubernetes.io/docs/concepts/configuration/secret/

Ngoài generic, Secret hỗ trợ các loại:

Opaque

arbitrary user-defined data

kubernetes.io/service-account-token

service account token

kubernetes.io/dockercfg

serialized ~/.dockercfg file

kubernetes.io/dockerconfigjson

serialized ~/.docker/config.json file

kubernetes.io/basic-auth

credentials for basic authentication

kubernetes.io/ssh-auth

credentials for SSH authentication

kubernetes.io/tls

data for a TLS client or server

bootstrap.kubernetes.io/token

bootstrap token data

Secret được dùng cho file mout vào file trong pod, env cho pod.

 

Tạo secret bằng command line

# kubectl create secret generic prod-db-secret --from-literal=username=produser --from-literal=password=Y4nys7f11

 

 

VD về Opaque

apiVersion: v1kind: Secretmetadataname: mysecrettype: OpaquedataUSER_NAME: YWRtaW4=  PASSWORD: MWYyZDFlMmU2N2Rm

 

Secret as ENV

apiVersion: v1

kind: Pod

metadata:

  name: secret-env-pod

spec:

  containers:

  - name: mycontainer

    image: redis

    env:

      - name: SECRET_USERNAME

        valueFrom:

          secretKeyRef:

            name: mysecret

            key: username

            optional: false

      - name: SECRET_PASSWORD

        valueFrom:

          secretKeyRef:

            name: mysecret

            key: password

            optional: false

  restartPolicy: Never

 

 

Secret as file in folder

apiVersion: v1kind: Podmetadataname: mypodspeccontainers:  - name: mypod    image: redis    volumeMounts:    - name: foo      mountPath: "/etc/foo"      readOnly: true  volumes:  - name: foo    secret:      secretName: mysecret

 

Secret as configfile

apiVersion: v1kind: Podmetadataname: mypodspeccontainers:  - name: mypod    image: redis    volumeMounts:    - name: foo      mountPath: "/etc/foo"      readOnly: true  volumes:  - name: foo    secret:      secretName: mysecret      items:      - key: username        path: my-group/my-username

 

DEPLOYMENT

Để chuyển Image, Ta chuyển kind từ Replicaset >  Deployment

Một deployment sẽ có dạng như sau:

[tuanda@localhost Chapter09]$ cat kubia-deployment-v1.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: kubia

spec:

  replicas: 3

  template:

    metadata:

      name: kubia

      labels:

        app: kubia

    spec:

      containers:

      - image: luksa/kubia:v1

        name: nodejs

  selector:

    matchLabels:

      app: kubia

---

apiVersion: v1

kind: Service

metadata:

  name: kubia

spec:

  type: LoadBalancer

  selector:

    app: kubia

  ports:

  - port: 80

    targetPort: 8080

 

 

Để đổi trực tiếp image mới ta có thể làm như sau:

[tuanda@localhost Chapter09]$ kubectl edit deployments.apps kubia

Hoặc

[tuanda@localhost Chapter09]$ kubectl set image deployment kubia nodejs=luksa/kubia:v2  (hoặc kubia:v3, v4)

Để khôi phục lại version trước đó, ta có các lệnh sau:

[tuanda@localhost Chapter09]$ kubectl rollout undo deployment kubia

Để theo dõi real-time undo đang làm gì, ta có lệnh status sau

[tuanda@localhost Chapter09]$ kubectl rollout status deployment kubia

Để show các version rollout, ta có lệnh sau:

[tuanda@localhost Chapter09]$ kubectl rollout history deployment kubia

Để đổi về 1 version history có chỉ định

[tuanda@localhost Chapter09]$ kubectl rollout undo deployment kubia --to-revision=4

 

 

 

VD_1 về đổi image trong deployment

apiVersion: apps/v1

kind: Deployment

metadata:

  name: webapp

spec:

  # minReadySeconds: 30

  selector:

    matchLabels:

      app: webapp

  replicas: 2

  template: # template for the pods

    metadata:

      labels:

        app: webapp

    spec:

      containers:

      - name: webapp

        image: richardchesterwood/k8s-fleetman-webapp-angular:release0-5

 

 

Muốn chuyển code. Ta chỉ cần chuyển image từ 0 lên 0.5

image: richardchesterwood/k8s-fleetman-webapp-angular:release0

Thành

image: richardchesterwood/k8s-fleetman-webapp-angular:release0-5

Sau đó chạy apply lại: $ kubectl apply  -f pods.yaml

 

 

VD2 Zero downtime deployment:

 

 

STATEFULL-SET

Khi tạo statefullset, mặc định sẽ tự tạo thêm PVC để giữ PV luôn cố định, dữ liệu sẽ không thay đổi, thích hợp cho sử dụng DB

[tuanda@localhost Chapter10]$ cat persistent-volumes-hostpath.yaml

kind: List

apiVersion: v1

items:

- apiVersion: v1

  kind: PersistentVolume

  metadata:

    name: pv-a

  spec:

    capacity:

      storage: 1Mi

    accessModes:

      - ReadWriteOnce

    persistentVolumeReclaimPolicy: Recycle

    hostPath:

      path: /tmp/pv-a

- apiVersion: v1

  kind: PersistentVolume

  metadata:

    name: pv-b

  spec:

    capacity:

      storage: 1Mi

    accessModes:

      - ReadWriteOnce

    persistentVolumeReclaimPolicy: Recycle

    hostPath:

      path: /tmp/pv-b

- apiVersion: v1

  kind: PersistentVolume

  metadata:

    name: pv-c

  spec:

    capacity:

      storage: 1Mi

    accessModes:

      - ReadWriteOnce

    persistentVolumeReclaimPolicy: Recycle

    hostPath:

      path: /tmp/pv-c

 

 

[tuanda@localhost Chapter10]$ cat kubia-statefulset.yaml

apiVersion: apps/v1

kind: StatefulSet

metadata:

  name: kubia

spec:

  serviceName: kubia

  replicas: 2

  selector:

    matchLabels:

      app: kubia # has to match .spec.template.metadata.labels

  template:

    metadata:

      labels:

        app: kubia

    spec:

      containers:

      - name: kubia

        image: luksa/kubia-pet

        ports:

        - name: http

          containerPort: 8080

        volumeMounts:

        - name: data

          mountPath: /var/data

  volumeClaimTemplates:

  - metadata:

      name: data

    spec:

      resources:

        requests:

          storage: 1Mi

      accessModes:

      - ReadWriteOnce

 

 

 

 

 

DOWNWARD API

 

 

 

 

 

Kube-Internal

 

 

 

Readiness & Liveness

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

 

 

podAntiAffinity

 

 

 

 

 

 

 

 

 

TIP-TRICK

Install telnet in docker apk

$ apk update$ apk add busybox-extras$ busybox-extras telnet localhost 6900

 

 

Sample Prod

Dashboard

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

curl -O https://raw.githubusercontent.com/kubernetes/dashboard/v2.5.0/aio/deploy/recommended.yaml

Sửa lại file chuyển từ clusterIP sang NodePort

kind: Service

apiVersion: v1

metadata:

  labels:

    k8s-app: dashboard-metrics-scraper

  name: dashboard-metrics-scraper

  namespace: kubernetes-dashboard

spec:

  type: NodePort

  ports:

    - port: 8000

      targetPort: 8000 

      nodePort: 31000

  selector:

    k8s-app: dashboard-metrics-scraper

Test gọi thử:

curl localhost:31000

URL: /

Giờ ta cần lấy mã token

kubectl create serviceaccount dashboard-admin-sa

kubectl create clusterrolebinding dashboard-admin-sa --clusterrole=cluster-admin --serviceaccount=default:dashboard-admin-sa

kubectl describe secret dashboard-admin*****

 

K8s Registry:

Bước 1. Chỉ định hosts:

echo 192.168.88.12 registry.tuanda.vn >> /etc/hosts

 

Bước 2: Import basic-auth và ssl vào configmap

# mkdir /opt/certs /opt/registry

# cd /opt

# openssl req -x509 -out ca.crt -keyout ca.key -days 1825 \

  -newkey rsa:2048 -nodes -sha256 \

  -subj '/CN=registry.tuanda.vn' -extensions EXT -config <( \

   printf "[dn]\nCN=registry.tuanda.vn\n[req]\ndistinguished_name = dn\n[EXT]\nsubjectAltName=DNS:registry.tuanda.vn\nkeyUsage=digitalSignature\nextendedKeyUsage=serverAuth")

 

# cd /opt/certs/

# kubectl create configmap registry-cert --from-file=ca.crt --from-file=ca.key

# yum install httpd-tools -y ; htpasswd -Bbn tuanda 123 > htpasswd

# kubectl create configmap registry-basic-auth --from-file=htpasswd

# kubectl get configmaps

 

Bước 4: Tạo deployment và service NodePort

apiVersion: apps/v1

kind: Deployment

metadata:

  name: private-repository-k8s

  labels:

    app: private-repository-k8s

spec:

  replicas: 1

  selector:

    matchLabels:

      app: private-repository-k8s

  template:

    metadata:

      labels:

        app: private-repository-k8s

    spec:

      volumes:

      - name: certs-vol

        configMap:

          name: registry-cert

      - name: auth-vol

        configMap:

          name: registry-basic-auth

      - name: registry-vol

        hostPath:

          path: /opt/registry

          type: Directory

 

      containers:

        - image: registry:2

          name: private-repository-k8s

          imagePullPolicy: IfNotPresent

          env:

          - name: REGISTRY_AUTH

            value: htpasswd

          - name: REGISTRY_AUTH_HTPASSWD_PATH

            value: "/auth/htpasswd"

          - name: REGISTRY_AUTH_HTPASSWD_REALM

            value: Registry Realm

          - name: REGISTRY_HTTP_TLS_CERTIFICATE

            value: "/certs/ca.crt"

          - name: REGISTRY_HTTP_TLS_KEY

            value: "/certs/ca.key"

          ports:

            - containerPort: 5000

          volumeMounts:

          - name: certs-vol

            mountPath: /certs

          - name: registry-vol

            mountPath: /var/lib/registry

          - name: auth-vol

            mountPath: /auth

---

apiVersion: v1

kind: Service

metadata:

  labels:

    app: private-repository-k8s

  name: private-repository-k8s

spec:

  ports:

  - port: 5000

    nodePort: 31320

    protocol: TCP

    targetPort: 5000

  selector:

    app: private-repository-k8s

  type: NodePort

 

Bước 4: Trust CA

sudo cp -rp /opt/certs/ca.crt  /etc/pki/ca-trust/source/anchors/

sudo update-ca-trust

sudo service docker restart

 

Bước 5: Đẩy cert vào tất cả các node docker, để permit self-certificate gọi pull. (all node)

mkdir -p /etc/docker/certs.d/registry.tuanda.vn:31320

cp -rp /opt/certs/ca.crt /etc/docker/certs.d/registry.tuanda.vn\:31320/

 

Bước 6: docker login đẩy config registry client sang các node:

# curl -v --user tuanda:123 https://registry.tuanda.vn:31320/v2/

# docker login registry.tuanda.vn:31320 -u tuanda -p 123

cat ~/.docker/config.json

{

        "auths": {

               "registry.tuanda.vn:31320": {

                       "auth": "dHVhbmRhOjEyMw=="

               }

        }

}

mkdir -p /home/tuanda/.docker ;  chown -R tuanda.tuanda /home/tuanda/.docker

Ta copy file config.json ở trên sang các worker node trong cluster. (/home/tuanda/.docker/config.json)

 

 

Bước 6: đẩy image lên registry:

# docker pull nginx:alpine

# docker tag nginx:alpine registry.tuanda.vn:31320/nginx:alpine

# docker push registry.tuanda.vn:31320/nginx:alpine

 

 

Bước 7: Launch pod với option registry

apiVersion: apps/v1

kind: Deployment

metadata:

  name: hello-kubernetes

  namespace: tuanda

spec:

  replicas: 1

  selector:

    matchLabels:

      app: hello-kubernetes

  template:

    metadata:

      labels:

        app: hello-kubernetes

    spec:

      containers:

      - name: hello-kubernetes-debug

        image: admin.tuan.name.vn:31320/debug-tools:1.0.0

        ports:

        - containerPort: 8080

      - name: hello-kubernetes-nginx

        image: admin.tuan.name.vn:31320/nginx:alpine

        ports:

        - containerPort: 80

      imagePullSecrets:

      - name: regcred

 

 

Ingress nginx:

https://kubernetes.github.io/ingress-nginx/deploy/

curl -O https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v1.1.1/deploy/static/provider/cloud/deploy.yaml

# kubectl apply -f deploy.yaml

kubectl create deployment demo --image=httpd --port=80

kubectl expose deployment demo

kubectl create ingress demo-localhost --class=nginx --rule=demo.localdev.me/*=demo:80

 

[tuanda@master-node ~]$ k get ingress -A

NAMESPACE   NAME             CLASS   HOSTS              ADDRESS   PORTS   AGE

default     demo-localhost   nginx   demo.localdev.me             80      10m

 

[tuanda@master-node ~]$ k get ingress demo-localhost -o yaml

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  creationTimestamp: "2022-03-09T19:17:25Z"

  generation: 1

  name: demo-localhost

  namespace: default

  resourceVersion: "3872"

  uid: 9d495903-1f4a-4166-8e08-89b3cc15422f

spec:

  ingressClassName: nginx

  rules:

  - host: demo.localdev.me

    http:

      paths:

      - backend:

          service:

            name: demo

            port:

              number: 80

        path: /

        pathType: Prefix

status:

  loadBalancer: {}

 

 

 

 

ARGO-CD -- ARGO-CD -- ARGO-CD-- ARGO-CD -- ARGO-CD --

CÀI ĐẶT

kubectl create ns argo

#url : https://github.com/argoproj/argo-workflows/tree/master/manifests (trong link này có các bản stable và test)

wget https://raw.githubusercontent.com/argoproj/argo/stable/manifests/quick-start-postgres.yaml

https://raw.githubusercontent.com/argoproj/argo-cd/stable/manifests/install.yaml

kubectl apply -n argo -f quick-start-postgres.yaml

kubectl -n argo port-forward deployment/argo-server 2746:2746

Truy cập vào: https://127.0.0.1:2746/workflows

#  kubectl -n argo get all -o wide

 

 

 

3. Hello World Workflow

[tuanda@localhost argo]$ cat 3.1.wf-hello-world.yaml

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  generateName: hello-world-  # Name of this Workflow

spec:

  entrypoint: whalesay        # Defines "whalesay" as the "main" template

  templates:

  - name: whalesay            # Defining the "whalesay" template

    container:

      image: docker/whalesay

      command: [cowsay]

      args: ["hello world"]   # This template runs "cowsay" in the "whalesay" image with arguments "hello world"

 [tuanda@localhost argo]$ kubectl -n argo create -f 3.1.wf-hello-world.yaml

 

TEMPLATE TRONG ARGO

Container template

[tuanda@localhost argo]$ cat 6.1.wf-container-template.yaml

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  generateName: wf-container-template-

spec:

  entrypoint: container-template

  templates:

  - name: container-template

    container:

      image: python:3.8-slim

      command: [echo, "The container template was executed successfully."]

[tuanda@localhost argo]$ kubectl -n argo create -f 6.1.wf-container-template.yaml

 

Script Template

[tuanda@localhost argo]$ cat 7.1.wf-script-template.yaml

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  generateName: wf-script-template-

spec:

  entrypoint: script-template

  templates:

  - name: script-template

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        print("The script template was executed successfully.")

[tuanda@localhost argo]$ kubectl -n argo create -f 7.1.wf-script-template.yaml

 

 

Resource Template

[tuanda@localhost argo]$ vim 9.1.resource-template.yaml

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  generateName: wf-resource-template-

spec:

  entrypoint: resource-template

  templates:

  - name: resource-template

    resource:

      action: create

      manifest: |

        apiVersion: argoproj.io/v1alpha1

        kind: Workflow

        metadata:

          name: wf-test

        spec:

          entrypoint: test-template

          templates:

          - name: test-template

            script:

              image: python:3.8-slim

              command: [python]

              source: |

                print("Workflow wf-test created with resource template.")

[tuanda@localhost argo]$ kubectl -n argo create -f 9.1.resource-template.yaml

 

Suspend

 

 

Template INVOCATORS

 

STEP

Serial Step (Step nối tiếp nhau)

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-steps-templates-serial

spec:

  entrypoint: steps-template-serial

  templates:

  - name: steps-template-serial

    steps:

    - - name: step1

        template: task-template

    - - name: step2

        template: task-template

    - - name: step3

        template: task-template

 

  - name: task-template

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        print("Task executed.")

[tuanda@localhost argo]$ kubectl -n argo create -f 11.1.wf-template-serial.yaml

 

Step Parabel (Step song song)

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-steps-templates-parallel

spec:

  entrypoint: steps-template-parallel

  templates:

  - name: steps-template-parallel

    steps:

    - - name: step1

        template: task-template

    - - name: step2

        template: task-template

      - name: step3

        template: task-template

    - - name: step4

        template: task-template

      - name: step5

        template: task-template

    - - name: step6

        template: task-template              

 

  - name: task-template

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        print("Task executed.")

[tuanda@localhost argo]$ kubectl -n argo create -f 12.1.wf-step-template-parabel.yaml

 

Suspend Step Template

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-suspend-steps-template

spec:

  entrypoint: steps-template

  templates:

  - name: steps-template

    steps:

    - - name: step1

        template: task-template

    - - name: step2

        template: task-template

      - name: step3

        template: task-template

    - - name: delay

        template: delay-template

    - - name: step4

        template: task-template

 

  - name: task-template

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        print("Task executed.")

 

  - name: delay-template

    suspend:

      duration: "20s"

[tuanda@localhost argo]$ kubectl -n argo create -f 13.1.wf-suspend-template.yaml

 

DAG

(Dag giống với step, nhưng khác với step là nó tường minh về phụ thuộc task cha của nó)

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-dag-template

spec:

  entrypoint: dag-template

  templates:

  - name: dag-template

    dag:

      tasks:

      - name: Task1

        template: task-template

      - name: Task2

        template: task-template

        dependencies: [Task1]

      - name: Task3

        template: task-template

        dependencies: [Task1]

      - name: Task4

        template: task-template

        dependencies: [Task2, Task3]

 

  - name: task-template

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        print("Task executed.")

[tuanda@localhost argo]$ kubectl -n argo create -f 14.1-wf-dag-template.yaml

 

 

Bài tập 1 về Step và Dag

Yêu cầu:

Chú ý: A là script, B là container, C là resource, D là suspend Template.

Ta chia làm 4 loại template và gọi nhau theo thứ tự DAG.

 

Giải bài tập:

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-exercise1

spec:

  entrypoint: dag-template

  templates:

  - name: dag-template

    dag:

      tasks:

      - name: Task1

        template: taskA-template

      - name: Task2

        template: taskB-template

        dependencies: [Task1]

      - name: Task3

        template: taskC-template

        dependencies: [Task1]

      - name: Task4

        template: taskB-template

        dependencies: [Task2]

      - name: Task5

        template: taskB-template

        dependencies: [Task4]

      - name: Task6

        template: delay-template

        dependencies: [Task3, Task5]

      - name: Task7

        template: taskA-template

        dependencies: [Task6]

 

  - name: taskA-template

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        print("Task A executed successfully with script template.")

 

  - name: taskB-template

    container:

      image: python:3.8-slim

      command: [echo, "Task B executed successfully with container template."]

 

  - name: taskC-template

    resource:

      action: create

      manifest: |

        apiVersion: argoproj.io/v1alpha1

        kind: Workflow

        metadata:

          name: wf-resource-template

        spec:

          entrypoint: resource-template

          templates:

          - name: resource-template

            script:

              image: python:3.8-slim

              command: [python]

              source: |

                print("Task C executed successfully with resource template.")

 

  - name: delay-template

    suspend:

      duration: "5s"

[tuanda@localhost argo]$ kubectl -n argo create -f 15.baitap.yaml

 

WORKFLOW FUNCTION ARGO

1.MinIO

# kubectl -n argo port-forward deployment.apps/minio 9000:9000

http://127.0.0.1:9000/  Mật khẩu mặc định là admin/password

 

2.Cài đặt Argo-Cli

https://github.com/argoproj/argo-workflows/releases

curl -sLO https://github.com/argoproj/argo-workflows/releases/download/v3.2.6/argo-linux-amd64.gz

gunzip argo-linux-amd64.gz

chmod +x argo-linux-amd64

mv ./argo-linux-amd64 /usr/local/bin/argo

argo version

 

3.InputParameter:

https://nimtechnology.com/2022/01/06/argo-workflows-lesson3-argo-cli-and-input-parameters/

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-input-parameter-dag

spec:

  entrypoint: dag-template

  arguments:

    parameters:

    - name: message1

      value: Task 1 is executed

    - name: message2

      value: Task 2 is executed

    - name: message3

      value: Task 3 finished

    - name: message4

      value: That's it with task 4

  templates:

  - name: dag-template

    inputs:

      parameters:

      - name: message1

      - name: message2

      - name: message3

      - name: message4

    dag:

      tasks:

      - name: Task1

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message1}}"}]

        template: task-template

      - name: Task2

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message2}}"}]

        template: task-template

        dependencies: [Task1]

      - name: Task3

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message3}}"}]

        template: task-template

        dependencies: [Task1]

      - name: Task4

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message4}}"}]

        template: task-template

        dependencies: [Task2, Task3]

 

  - name: task-template

    inputs:

      parameters:

      - name: text

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        p = "{{inputs.parameters.text}}"

        print(p)

 

 

 

 

 

 

Kết quả:

 

 

 

 

 

4.Scripts Result

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-script-result

spec:

  entrypoint: dag-template

  arguments:

    parameters:

    - name: message1

      value: Task 1 is executed

    - name: message2

      value: Task 2 is executed

  templates:

  - name: dag-template

    inputs:

      parameters:

      - name: message1

      - name: message2

    dag:

      tasks:

      - name: Task1

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message1}}"}]

        template: task-template

      - name: Task2

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message2}}"}]

        template: task-template

        dependencies: [Task1]

      - name: Task3

        template: task-output

        dependencies: [Task1]

      - name: Task4

        arguments:

          parameters: [{name: text, value: "{{tasks.Task3.outputs.result}}"}]

        template: task-template

        dependencies: [Task2, Task3]

 

  - name: task-template

    inputs:

      parameters:

      - name: text

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        p = "{{inputs.parameters.text}}"

        print(p)

 

  - name: task-output

    script:

      image: node:9.1-alpine

      command: [node]

      source: |

        var out = "Print result";

        console.log(out);

 

Đầu ra của console.log(out) Task3 sẽ là đầu vào của Task 4

 

 

5.Output parameter

 

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-output-parameter

spec:

  entrypoint: dag-template

  arguments:

    parameters:

    - name: message1

      value: Task 1 is executed

    - name: message2

      value: Task 2 is executed

  templates:

  - name: dag-template

    inputs:

      parameters:

      - name: message1

      - name: message2

    dag:

      tasks:

      - name: Task1

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message1}}"}]

        template: task-template

      - name: Task2

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message2}}"}]

        template: task-template

        dependencies: [Task1]

      - name: Task3

        template: task-output

        dependencies: [Task1]

      - name: Task4

        arguments:

          parameters: [{name: text, value: "{{tasks.Task3.outputs.parameters.task-param}}"}]

        template: task-template

        dependencies: [Task2, Task3]

 

  - name: task-template

    inputs:

      parameters:

      - name: text

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        p = "{{inputs.parameters.text}}"

        print(p)

 

  - name: task-output

    script:

      image: node:9.1-alpine

      command: [node]

      source: |

        var out = "Print result";

        console.log(out);

    outputs:

      parameters:

      - name: task-param

        value: "task-output-parameter"

 

 

 

 

6.Output Parameter File

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-output-parameter-file

spec:

  entrypoint: dag-template

  arguments:

    parameters:

    - name: message1

      value: Task 1 is executed

    - name: message2

      value: Task 2 is executed  

  templates:

  - name: dag-template

    inputs:

      parameters:

      - name: message1

      - name: message2

    dag:

      tasks:

      - name: Task1

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message1}}" }]

        template: task-template

      - name: Task2

        dependencies: [Task1]

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message2}}" }]

        template: task-template

      - name: Task3

        dependencies: [Task1]

        template: task-output

      - name: Task4

        dependencies: [Task2, Task3]

        arguments:

          parameters: [{name: text, value: "{{tasks.Task3.outputs.parameters.task-param}}" }]

        template: task-template

       

  - name: task-template

    inputs:

      parameters:

      - name: text

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        p = "{{inputs.parameters.text}}"

        print(p)

       

  - name: task-output

    script:

      image: node:9.1-alpine

      command: [node]

      source: |

        var par = "Whatever parameters are written to the file.";

        const fs = require('fs');

        fs.writeFile("/tmp/output-params.txt", par)

    outputs:

      parameters:

      - name: task-param

        valueFrom:

          path: /tmp/output-params.txt

 

 

 

 

 

7. Artifact

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-artifact

spec:

  entrypoint: dag-template

  arguments:

    parameters:

    - name: message1

      value: Task 1 is executed

    - name: message2

      value: Task 2 is executed  

  templates:

  - name: dag-template

    inputs:

      parameters:

      - name: message1

      - name: message2

    dag:

      tasks:

      - name: Task1

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message1}}" }]

        template: task-template

      - name: Task2

        dependencies: [Task1]

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message2}}" }]

        template: task-template

      - name: Task3

        dependencies: [Task1]

        template: task-output-artifact

      - name: Task4

        dependencies: [Task2, Task3]

        arguments:

          artifacts: [{name: text, from: "{{tasks.Task3.outputs.artifacts.artifact-out}}" }]

        template: task-input-artifact

       

  - name: task-template

    inputs:

      parameters:

      - name: text

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        p = "{{inputs.parameters.text}}"

        print(p)

       

  - name: task-output-artifact

    script:

      image: node:9.1-alpine

      command: [node]

      source: |

        var par = "Whatever parameters are written to the file.";

        const fs = require('fs');

        fs.writeFile("/tmp/output-params.txt", par)

    outputs:

      artifacts:

      - name: artifact-out

        path: /tmp/output-params.txt

 

  - name: task-input-artifact

    inputs:

      artifacts:

      - name: text

        path: /tmp/text

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        with open("/tmp/text", "r") as f:

          lines = f.read()

          print(lines)

 

 

 

 

8. Secrets as environment variables

 

9. Secrets as mounted volumes

 

10. Loops

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-loop

spec:

  entrypoint: dag-template

  arguments:

    parameters:

    - name: message1

      value: Task 1 is executed

    - name: message2

      value: Task 2 is executed  

  templates:

  - name: dag-template

    inputs:

      parameters:

      - name: message1

      - name: message2

    dag:

      tasks:

      - name: Task1

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message1}}" }]

        template: task-template

      - name: Task2

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message2}}" }]

        template: task-template

      - name: Task3

        dependencies: [Task1]

        template: task-template

        arguments:

          parameters:

          - name: text

            value: "{{item}}"

        withItems:

        - Element1

        - Element2

        - Element3

       

  - name: task-template

    inputs:

      parameters:

      - name: text

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        p = "{{inputs.parameters.text}}"

        print(p)

 

 

11. Loops with sets

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-loop-sets

spec:

  entrypoint: dag-template

  arguments:

    parameters:

    - name: message1

      value: Task 1 is executed

    - name: message2

      value: Task 2 is executed  

  templates:

  - name: dag-template

    inputs:

      parameters:

      - name: message1

      - name: message2

    dag:

      tasks:

      - name: Task1

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message1}}" }]

        template: task-template

      - name: Task2

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message2}}" }]

        template: task-template

      - name: Task3

        dependencies: [Task1]

        template: task-loop-set

        arguments:

          parameters:

          - name: extractor

            value: "{{item.extractor}}"

          - name: table

            value: "{{item.table}}"

        withItems:

        - { extractor: 'PythonExtractor', table: 'Table 1'}

        - { extractor: 'PySparkExtractor', table: 'Table 2'}

        - { extractor: 'DaskExtractor', table: 'Table 3'}

       

  - name: task-template

    inputs:

      parameters:

      - name: text

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        p = "{{inputs.parameters.text}}"

        print(p)

 

  - name: task-loop-set

    inputs:

      parameters:

      - name: extractor

      - name: table

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        print("Applying ", "{{inputs.parameters.extractor}}", "to the table ", "{{inputs.parameters.table}}")

 

 

12. Loops with sets as input parameters

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-loop-sets-inputparam

spec:

  entrypoint: dag-template

  arguments:

    parameters:

    - name: message1

      value: Task 1 is executed

    - name: message2

      value: Task 2 is executed

    - name: ingest-list

      value: |

        [

          { "extractor": "PythonExtractor", "table": "Table 1"},

          { "extractor": "PySparkExtractor", "table": "Table 2"},

          { "extractor": "DaskExtractor", "table": "Table 3"}

        ]

     

  templates:

  - name: dag-template

    inputs:

      parameters:

      - name: message1

      - name: message2

      - name: ingest-list

    dag:

      tasks:

      - name: Task1

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message1}}" }]

        template: task-template

      - name: Task2

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message2}}" }]

        template: task-template

      - name: Task3

        dependencies: [Task1]

        template: task-loop-set

        arguments:

          parameters:

          - name: extractor

            value: "{{item.extractor}}"

          - name: table

            value: "{{item.table}}"

        withParam: "{{inputs.parameters.ingest-list}}"

 

       

  - name: task-template

    inputs:

      parameters:

      - name: text

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        p = "{{inputs.parameters.text}}"

        print(p)

 

  - name: task-loop-set

    inputs:

      parameters:

      - name: extractor

      - name: table

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        print("Applying ", "{{inputs.parameters.extractor}}", "to the table ", "{{inputs.parameters.table}}")

 

 

 

13. Dynamic Loops

 

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-loop-dynamic

spec:

  entrypoint: dag-template

  arguments:

    parameters:

    - name: message1

      value: Task 1 is executed

  templates:

  - name: dag-template

    inputs:

      parameters:

      - name: message1

 

    dag:

      tasks:

      - name: Task1

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.message1}}" }]

        template: task-template

      - name: Task2

        template: task-generate-list

      - name: Task3

        dependencies: [Task2]

        template: task-loop-set

        arguments:

          parameters:

          - name: extractor

            value: "{{item.extractor}}"

          - name: table

            value: "{{item.table}}"

        withParam: "{{tasks.Task2.outputs.result}}"

 

       

  - name: task-template

    inputs:

      parameters:

      - name: text

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        p = "{{inputs.parameters.text}}"

        print(p)

 

  - name: task-generate-list

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        import json

        import sys

        list = [("PythonExtractor", "Table 1"), ("PySparkExtractor", "Table 2"), ("DaskExtractor", "Table 3")]

        json.dump([{"extractor": i[0], "table": i[1]} for i in list], sys.stdout)

 

  - name: task-loop-set

    inputs:

      parameters:

      - name: extractor

      - name: table

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        print("Applying ", "{{inputs.parameters.extractor}}", "to the table ", "{{inputs.parameters.table}}")

 

 

14. Conditionals

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

  name: wf-condition

spec:

  entrypoint: dag-template

  arguments:

    parameters:

    - name: messageA

      value: A

    - name: messageB

      value: B

 

  templates:

  - name: dag-template

    inputs:

      parameters:

      - name: messageA

      - name: messageB

 

    dag:

      tasks:

      - name: Task1

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.messageA}}" }]

        template: task-decision

      - name: TaskA

        template: task-A

        dependencies: [Task1]

        when: "{{tasks.Task1.outputs.result}} == A"

      - name: TaskB

        template: task-B

        dependencies: [Task1]

        when: "{{tasks.Task1.outputs.result}} == B"

      - name: Task2

        arguments:

          parameters: [{name: text, value: "{{inputs.parameters.messageB}}" }]

        template: task-decision

      - name: TaskA2

        template: task-A

        dependencies: [Task2]

        when: "{{tasks.Task2.outputs.result}} == A"

      - name: TaskB2

        template: task-B

        dependencies: [Task2]

        when: "{{tasks.Task2.outputs.result}} == B"

   

  - name: task-decision

    inputs:

      parameters:

      - name: text

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        p = "{{inputs.parameters.text}}"

        print(p)

 

  - name: task-A

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        print("Task A was executed.")

 

  - name: task-B

    script:

      image: python:3.8-slim

      command: [python]

      source: |

        print("Task B was executed.")

 

 

15. Depends

 

16. Depends theorie

 

17. Retry strategy

 

18. Recursion

 

19. Exercise 2 - task introduction

 

20. Exercise 2 - solution

 

 

 

 

 

 

 

 

 

 

 

Không có nhận xét nào:

Đăng nhận xét

Ứng cứu khi chown -R user1:user1 /etc

1. Bài toán Gõ nhầm: chown -R user1:user1 /etc 2. Giải: Cách 1: Tìm bản backup /etc cũ (tỉ lệ phục hồi gần như ~100%) Cách 2: Tìm tạm 1 thư ...